2-2 Basic Differentiation Rules

The Constant Rule

$$\frac{d}{dx}[c] = 0$$

i.e. The derivative of a constant function is 0. Explain why this makes sense from a graphing perspective.

The Power Rule

If n is a rational number, then the function $f(x) = x^n$ is differentiable and

The Constant Multiple Rule

If f is a differentiable function and c is a real number, then cf is also differentiable and

$$\frac{d}{dx}[cf(x)] = cf'(x)$$

The sum and difference rule

Ex:
$$f(x) = 2x^{3} + 3x^{3/2} - 7 + \frac{1}{x}$$

\sim	Λ-	D :	- D		4:	D	
Z.	2a -	Basi	IC DE	eriva	tive	Kui	es

Date:									

If
$$f(x) = \sin x$$
, then $f'(x) =$

If
$$f(x) = \cos x$$
, then $f'(x) =$

If
$$f(x) = e^x$$
, then $f'(x) =$

We will derive the remaining trig functions, encounter logarithmic functions and other exponential functions at a later time.

Find a point where the tangent line is horizontal - Homework Preview